Acta Crystallographica Section E

Structure Reports

Online

6-Chloro-4-(dimethylaminomethyleneamino)-2-(methylsulfanyl)pyrimidine

ISSN 1600-5368

José M. de la Torre, ${ }^{\text {a }}$ Justo Cobo, ${ }^{\text {a }}$
Manuel Nogueras ${ }^{\text {a }}$ and John Nicolson Low ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\mathbf{b}}$ Department of Chemistry,
University of Aberdeen, Meston Walk, Old Aberdeen, AB24 3UE, Scotland.

Correspondence e-mail: che562@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.106$
Data-to-parameter ratio $=18.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The molecules in the title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{~S}$, are linked in pairs by a $\pi-\pi$ stacking interaction. There are, however, no other direction-specific interactions.

Comment

In our search for good candidates for intermediates in the synthesis of new pyrimidine fused ring systems, we have prepared the title compound, (I), (Fig. 1), a formyl derivative of 4-amino-6-chloro-2-(methylsulfanyl)pyrimidine, using the Vilsmeier formylation reaction (Vilsmeier \& Haack, 1927).

(I)

The bond lengths and angles show no unusual features. The essentially planar group consisting of atoms N4, C41, N42, C43 and C44 forms a dihedral angle of 31.49 (8) ${ }^{\circ}$ with that of the planar pyrimidine ring. The leading torsion angles are given in Table 1. The molecules are linked into pairs by a $\pi-\pi$ stacking

Figure 1
A view of (I) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 24 July 2006
Accepted 14 August 2006
interaction (Fig. 2). The molecules at (x, y, z) and ($1-x, 1-y$, $1-z$) are parallel, with an interplanar spacing of 3.4661 (2) A. The ring-centroid separation is 3.359 (2) \AA corresponding to a ring offset of $0.857 \AA$.

Experimental

The Vilsmeier reagent was prepared in an ice-bath by adding phosphorus oxychloride $(1.8 \mathrm{mmol})$ to N, N-dimethylformamide (38 mmol) and stirring for 15 min . 4-Amino-6-chloro-2-(methylsulfanyl)pyrimidine ($0.2 \mathrm{~g}, 1.14 \mathrm{mmol}$) was then added and the reaction temperature raised to $323-333 \mathrm{~K}$, and the mixture stirred for 2 h . The reaction mixture was then poured on to crushed ice and neutralized with NaOH (10% in water) until the pH was raised to $8-$ 9. The resulting white solid was filtered off and recrystallized from DMSO- d_{6} producing white crystalline blocks suitable for singlecrystal X-ray diffraction (yield 60%; m.p. 374-376 K). MS (70 eV): 232/230 (38:100, $\left.M+2 / M^{+}\right)$, 217/215 (17/18, $\left.\left[(M+2 / M)-\mathrm{CH}_{3}\right]^{+}\right), 186 /$ $184\left(17 / 18,\left[(M+2 / M)-\mathrm{SCH}_{2}\right]^{+}\right), 149\left(31,\left[M-\mathrm{SCH}_{3}-\mathrm{Cl}\right]^{+}\right), 71$ (4, $\left.\left[\mathrm{N}=\mathrm{CH}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+}\right)$.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{~S}$
$M_{r}=230.72$
Triclinic, $P \overline{1}$
$a=7.4817(2) \AA$
$b=8.5739$ (2) \AA
$c=9.818$ (3) A
$\alpha=111.973$ (2) ${ }^{\circ}$
$\beta=91.661$ (2) ${ }^{\circ}$
$\gamma=114.566(2)^{\circ}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.856, T_{\text {max }}=0.901$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.106$
$S=1.13$
2378 reflections
130 parameters
H -atom parameters constrained

$$
V=518.31(15) \AA^{3}
$$

$Z=2$
$D_{x}=1.478 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

12192 measured reflections 2378 independent reflections 2015 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0456 P)^{2}\right. \\
& \quad+0.5109 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

N3-C2-S2-C21	$0.17(18)$	N4-C41-N41-C43	$-3.4(3)$
N1-C2-S2-C21	$-179.75(14)$	N4-C41-N41-C44	$175.22(18)$
N3-C4-N4-C41	$-25.4(3)$	C2-N1-C6-Cl6	$-177.26(13)$
C5-C4-N4-C41	$156.38(18)$	C4-C5-C6-Cl6	$175.75(14)$
C4-N4-C41-N41	$174.23(17)$		

H atoms were treated as riding atoms, with aromatic $\mathrm{C}-\mathrm{H}=$ $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$. The positions of all methyl H atoms were checked in a difference map.

Data collection: COLLECT (Bruker-Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction:

Figure 2
A view of the $\pi-\pi$ stacking viewed perpendicular to the plane of the pyrimidine ring. Atoms labelled with an asterisk (*) are in the molecule at $(1-x, 1-y, 1-z)$. For the sake of clarity, all H atoms have been omitted.

EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and WORDPERFECT macro PRPKAPPA (Ferguson, 1999).

JT, MN and JC thank the Consejería de Innovacíon, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén, Spain, for financial support. JT thanks also the Universidad de Jaén for a research scholarship.

References

Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Duisenberg, A. J. M, Hooft, R. W. W., Schreurs, A. M. M. \& Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vilsmeier, A. \& Haack, A. (1927). Chem. Ber. 60, 119-122.

[^0]: © 2006 International Union of Crystallography All rights reserved

